

Kids in the	Ir	nvert Inv	estig	gator	
Rive	er or Cree	ek:			
Dat	:e:	Time:			
CREEK We	ather:				
Part of River (cir	rcle one):	Pool	Riffl	le Glide	
Group 1: Intole	rant	Group 2: Somewhat	Tolerant	Group 3: Toler	ant
Common Name	# Found	Common Name	# Found	Common Name	# Found
stonefly		damselfly		aquatic worm	
mayfly		dragonfly		leech	
caddisfly 🤏 🔪		cranefly		snail 🔞 🛷	
beetle 🚔		clams/mussels 🚳		midge	
water penny		scud A		planarian 🌾 📂	
dobsonfly 👬		crayfish		mosquito 🕻 🙀	
Total:		Total:		Total:	
Group 1 total x 3: (index value)		Group 2 total x 2: (index value)		Group 3 total x 1: (index value)	
Delletier	T - I	Po (G	llution To	lerance Index (PTI):	
Pollution	Iolerand	ce			

23 or more	Excellent
17 - 22	Good
11 - 16	Fair
10 or less	Poor

River Section	PTI	Rating
Pool		
Riffle		
Glide		

1. Are there any differences in the PTI between the river sections?

2. What can you say about the overall health of the river based on this data?

3. In addition to being an indicator of water quality, what other relationship do these macroinvertebrates have to salmon?

4. If you were a salmon or other fish, would this be a good place to live? Why or why not?

Habitat Sense

Na	ame:	Date:	
Str	ream:	Time:	
Lo	ocation Description:		
Wa	/ater Temperature:	Weather:	
1.	Habitat Type (circle): Pool	Riffle Glide	
2.	Unit Length:		
3.	Unit Widths: 1)	2) 3)	
	Average Width:		
4.	Unit surface area: Length x	Width =	square ft
5.	Max Depth:		
6.	Dominant Substrate (circle):		
	Sand/Silt <2mm Gravel 2-64 m	m Cobble 64-256 mm Bc	oulder >256mm
	Smaller than a pea pea to baseball	baseball to basketball big	ger than a basketball
7.	Subdominant Substrate (circle):		
	Sand/Silt <2mm Gravel 2-64 m	m Cobble 64-256 mm Bc	oulder >256mm
	Smaller than a pea pea to baseball	baseball to basketball big	ger than a basketball
8.	Number of pieces of large woody r	naterial:	
	Small (6"diameter, 20 ft long): _		
	Medium (12" diameter, 35 ft lo	ng):	
	Large (20" diameter, 35 ft long)	:	
	Log jams present? Yes	No	

Stream Flow

River of Creek:

Date: ______ Time: ______

	Stream Length (Ft)	Float Time (s)	Stream Width (ft)	Stream Depth (ft)
Group 1				
Group 2				
Group 3				
Total				
Average				

<u>Calculating Flow</u>

 $Q = V \times A$

Q --> Flow V --> Average Velocity (ft/s) A --> Cross Sectional Area (ft2)

1. Where does the water that we measured come from, and why does it flow at the velocity we measured?

2. How do continual changes in discharge affect the stream corridor?

3. Give examples of how humans use and alter the natural flow of creeks or rivers.

4. How might climate change impact the hydrologic cycle, and therefore our daily lives?

Riparian Rx

Evaluating Erosion Resistance of a Stream Bank					
1. Use each flag as the center of your circle plot	Deep Rooted Plants		Shallow Rooted Plants		
2. Only tally when you observe one of the vegetation categories3. Do not count each individual plant; one tally per category per circle plot	Sedges & Rushes	Shrubs & Trees	Grasses	Forbs	Bare Ground
Row 1 . Record tally in box that describes your plant's category					
Row 2 . Total # of observations for each category					
Row 3 . Total # of observations (sum all categories in Row. 2)					
Row 4 . Proportion of each category = (Row 2 ÷ Row 3)					
Row 5 . Multiply each value in <u>Row 4</u> by the factor in each category - record in <u>Row 6</u>	x10	x8	хб	x3	x1
Row 6. Score for each category					

Plant Identification Tips

Sedges have edges,

rushes are round,

grasses are hollow right up from the ground.

<u>Forbs</u> are herbaceous flowering plants that are not grasses, sedges, or rushes. <u>Total Score (add all</u> <u>values in Row 6:</u>

Site Scores: 7-10 healthy banks 4-7 somewhat healthy banks 0-4 unhealthy banks

*The higher the score, the more the stream bank will resist erosion!

Evaluating Erosion Resistance of a Stream Bank - Discussion

Why do some plant categories score higher than others & bare ground?

How do these measurements help us to understand how well this section of Entiat River riparian zone will resist erosion?

How can erosion negatively impact salmon?

Vegetation Structure & Function

Plant structure or function	*Impact(s) There can be more than one!	Increases or Decreases Impact?	Explain	*Impacts
Shade				Word Bank:
Trunks/limbs				erosion temperature habitat
Roots				food water quality
Leaves				

How do anadromous fishes, like salmon and steelhead, contribute to riparian health?

Water Quality

Date	Time:	
Name of River o	r Creek:	
Weather:		
Temperature My Prediction:	Results:	°C or °F (circle one
What could change the	temperature of our creek?	
<u>pH</u>	Decultor	
My Prediction:	Results:	
What could change the	pH of our creek?	
Turbidity		
My Prediction:	Results:	NTU

How is turbidity related to temperature?

Dissolved Oxygen (DO)

My Prediction: _____ Results: _____ ppm What factors contribute to this level of DO?

Does the creek have adequate DO for salmon and trout?

Connecting to our environment

Point Source Pollution:

Give an example of <u>point source pollution</u> and list a water quality indicator it may affect.

Non-Point Source Pollution:

Give an example of <u>non-point source pollution</u> and list a water quality indicator it may affect.

Fish Health External Anatomy

Species: Length: Adipose Present? : Yes or No

Observations: Any external injuries or signs of illness?

Looking only at the outside of the fish, can you determine if it is Male or Female? How do you know?

Anything else notable?

- 1. Which fin is removed from hatchery fish? Why?
- 2. What is the function of the lateral line?
- 3. Which fin(s) help with forward momentum?
- 4. Which fin(s) help with stabilitization?

Internal Anatomy

Observations:

Any internal injuries or signs of illness?

Male or Female? How do you know?

Anything else notable?

- 1. What are some common symptoms of sick fish?
- 2. What is the name for a bundle of eggs? What is milt?
- 3. How are salmon kidneys different from other kidneys?
- 4. What is the function of the swim bladder?
- 5.What does the liver do?
- 6. What's an advantage of having a pyloric ceca (the worm-like bundle of intestines)?
- 7. What stage of life was this specimen in when it died? What observations of the internal anatomy support your conclusion?